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Structure optimization in an off-lattice protein model

Hsiao-Ping Hsu, Vishal Mehra, and Peter Grassberger
John-von-Neumann Institute for Computing, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 21 May 2003; published 30 September 2003!

We study an off-lattice protein toy model with two species of monomers interacting through modified
Lennard-Jones interactions. Low energy configurations are optimized using the pruned-enriched-Rosenbluth
method~PERM!, hitherto employed to native state searches only for off-lattice models. For two dimensions we
found states with lower energy than previously proposed putative ground states for all chain lengths>13. This
indicates that PERM has the potential to produce native states also for more realistic protein models. Ford
53, where no published ground states exist, we present some putative lowest energy states for future com-
parison with other methods.
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Predicting the structure of a protein, given its sequence
amino acids, is one of the central problems in computatio
biology. Since the problem is too difficult to be approach
with fully realistic potentials derived from first principles
many authors have studied it in various degrees of simp
cations. This involves in particular neglect of solvent wat
simplifying the interactions, lumping together smaller grou
of atoms, and putting everything on a discrete lattice. Amo
the most radically simplified models is the HP model of D
and coworkers@1# where each amino acid is treated as
point particle on a regular~quadratic or cubic! lattice, and
only two types of amino acids—hydrophobic~H! and polar
~P!—are considered. Apart from the forces responsible
the connectedness of the chain, the only forces are con
forces between nearest lattice neighbors which are diffe
for HH, HP, and PP pairs.

Even in this highly simplified model it is far from trivia
to predict the native state for a given amino acid seque
@2–7#. The most efficient algorithms are either determinis
and cannot be generalized to more realistic models at all@7#,
or use sequential importance sampling with resampling
the form of the pruned-enriched-Rosenbluth method~PERM!
@6#. Although it was shown that the latter can be applied a
to off-lattice homopolymers at higher temperatures@8#, it is
not obvious that it will be efficient for off-lattice heteropoly
mers at low temperatures needed for protein folding.

While there are a large number of benchmark cases
lattice protein models in the literature, there exist very f
simple off-lattice models with known lowest energy sta
that can be used as benchmarks for efficient algorithms.
such model is the so-calledAB model by Stillingeret al.
@9,10# which also uses only two types of monomers, no
called ‘‘A’’ ~hydrophobic! and ‘‘B’’ ~polar!. The distances be
tween consecutive monomers along the chain are held fi
to b51, while nonconsecutive monomers interact throug
modified Lennard-Jones potential. In addition, there is
energy contribution from each angleu i between successiv
bonds. More precisely, the total energy for aN monomer
chain is expressed as

E5 (
i 52

N21

E1~u i !1 (
i 51

N22

(
j 5 i 12

N

E2~r i j ,z i ,z j !, ~1!
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where

E1~u i !5 1
4 ~12cosu i !, ~2!

E2~r i j ,z i ,z j !54@r i j
2122C~z i ,z j !r i j

26#. ~3!

Here r i j is the distance between monomersi and j ~with i
, j ). Eachz i is eitherA or B, andC(z i ,z j ) is 11,1 1

2 , and
2 1

2 respectively, forAA,BB, and AB pairs, giving strong
attraction betweenAA pairs, weak attraction betweenBB
pairs, and weak repulsion betweenA andB.

This model has been studied in several papers@9–13# For
its two-dimensional~2D! version, putative ground states fo
various AB sequences and for various chain lengths
given in Refs.@9,10,13#. Similar models were also studied i
Refs.@11,12,14,15#, but putative ground states for these ge
eralizations were not given at all or for very short chai
only. The methods used to find low energy states of the
model include neural networks@9#, conventional Metropolis
type Monte Carlo procedures@10#, simulated tempering@11#,
multicanonical Monte Carlo@12#, biologically motivated
methods@13,15#, and molecular dynamics@14#. In all cases
the stochastic minimization can only lead to some state in
neighborhood of a local~and hopefully also global! mini-
mum. A greedy deterministic method such as conjugate g
dient descent is subsequently applied to reach the minim
itself.

The purpose of the present paper is to see whether PE
can be efficient for energy minimization in theAB model. In
particular we shall use the new variant of PERM presente
Ref. @6#. We shall restrict ourselves to the subclass of ‘‘F
bonacci sequences’’ studied also in Ref.@10#, defined recur-
sively by

S05A, S15B, Si 115Si 21* Si . ~4!

Here * is the concatenation operator. The first few s
quences areS25AB,S35BAB,S45ABBAB, etc. They
have lengths given byNi 115Ni 211Ni , i.e., given by the
Fibonacci numbers. Hydrophobic residuesA occur isolated
©2003 The American Physical Society03-1
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TABLE I. Sequences and energies reached.Eperm is the lowest energy obtained by a PERM run, whileEmin is the minimum energy
obtained by subsequent conjugate gradient minimization.Emin* is the putative ground state energy obtained by Stillinger and Head-Go
@10# ~for d52 only!.

d52 d53
N Sequence Eperm Emin Emin* Eperm Emin

13 ABBABBABABBAB 23.2167 23.2939 23.2235 23.9730 24.9616
21 BABABBABABBABBABABBAB 25.7501 26.1976 25.2881 27.6857 211.5238
34 ABBABBABABBABBABABBAB 29.2195 210.7001 28.9749 212.8601 221.5678

ABBABBABABBAB
55 BABABBABABBABBABABBAB 214.9050 218.5154 214.4089 220.1070 232.8843

ABBABBABABBABBABABBAB
ABBABBABABBAB
.
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along the chain, whileB’s occur either isolated or in pairs
The fraction ofB’s tends to the golden meang50.618 033
as the lengthN→`.

Although PERM also gives detailed information about e
cited states and thermodynamic behavior at temperatureT
.0, we shall not discuss this here. For studying the dyna
ics of the folding transition, in contrast, we would have
assume some realistic microscopic dynamics. Just like o
advanced sampling methods such as simulated annealin
parallel tempering, PERM sacrifices the realism of the
namics for efficiency. In addition, as in the studies mention
above, PERM is only used for coming close to the nat
state, and conjugate gradient descent is then used to reac
minimum energy state itself.

PERM is a biased chain growth algorithm with ‘‘popul
tion control,’’ i.e., a sequential importance sampling meth
with resampling@16#, implemented recursively in a depth
first fashion @8#. While chains grow, they acquire weigh
that include both Boltzmann factors and bias correct
~‘‘Rosenbluth’’ @17#! factors. During the growth, sample
with large weight are cloned, while chains with too sm
weight are pruned out. Except for the depth-first implem
tation and for the fact that it gives the correct Gibb
Boltzmann statistics, PERM resembles therefore genetic
gorithms. While the original version of PERM was qui
successful for lattice proteins@18,19# and for a host of other
applications@20#, it worked rather poorly for minimization o
off-lattice polymer models@21#.

In this paper we therefore employ an improved vers
called nPERMis in Ref.@6# ~for ‘‘new PERM with impor-
tance sampling’’!. Basically, instead of making exact clone
of high weight chains and hoping that these clones w
evolve differently during the subsequent growth~as in origi-
nal PERM!, we now branch such that the last monomers
different at the point of branching. Thereby we now force t
two copies to be distinct, and we avoid the loss of divers
that also plagues genetic algorithms when the evolution p
sure is too high.

For lattice polymers@6# one has for each partially grow
chain a finite number of ‘‘candidate directions’’ for the ne
step. One first estimates the total weight of all these one-
continuations. Based on this estimate, one decides on
number of clones to be made. If, say, one wants to makk
03770
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clones, one scans all possiblek-tuples of possible differen
candidate directions, and selects one of these tuples acc
ing to its weight. For off-lattice polymers one proceeds e
actly in the same way, with one exception. The candida
are now no longer the lattice bonds, but one has to choosK
candidate locations for the next monomerrandomly. The
numberK is an important parameter. WhileK'5 was opti-
mal for 3D polymers near theQ-point @8#, we found that
lowest energies were reached in theAB model for K'50.
While it was necessary to make clonings with very ma
siblings in simulating the HP model with the old version
PERM @18,19#, we now obtained good results by restrictin
ourselves tok-tuples withk<3.

Another important parameter is the temperature at wh
the simulation is run. We typically used temperatures w
below the collapse transition,kT'0.1 or even lower. In or-
der to speed up the ground state search, we also modified
Lennard-Jones potential by puttingE2(r )51` for r ,1.
This hard core constraint reduces the available phase sp
but has no effect on ground state configurations~we did not
use it in the conjugate gradient minimization, and w
checked that it was satisfied after minimization!. For chain
deformation algorithms it could slow down the dynamic
since the hard cores could act as barriers, but it can o
improve any pure chain growth algorithm. Finally, as a la
trick, we used equally spaced azimuthal angles for all can
dates~with one overall angle chosen at random, for ea
group of candidates!, in order to make them cover the un
sphere more uniformly. All simulations were done on Linu
and UNIX workstations. CPU times were up to 2 days, b
their precise values are not very significant. Exact timin
would involve frequent comparisons of the minimizer bas
of attraction reached by PERM, which we considered as
time consuming.

In Table I we list the lowest energies thus obtained for
two- and three-dimensionalAB model for all Fibonacci se-
quences with 13<N<55. The latter is equal to the length o
the longest sequence studied in Ref.@10#. Let us first discuss
the cased52. For comparison we quote also the putati
ground state energies from Table II of Ref.@10#. For N
,13, our energies agree perfectly with those of Ref.@10#.
Except for the shortest chain withN513, already PERM
3-2
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gave in all cases shown in Table I lower energies than th
found in Ref.@10#. In all these cases already PERM by itse
showed that the topologies shown in Ref.@10# are not the
native ones. While the subsequent gradient descent impro
the energies substantially, it in no case changed the ov
topology.

The latter is true also ford53, although there the subse
quent minimization gave even larger energy changes tha
d52. This shows that ind53 too, PERM is able to find
states very close to the native ones. Since there exis
published ground state energies for the 3DAB model, we are
unable to compare PERM with other methods.

The configurations corresponding to the energies sho
in Table I are shown in Figs. 1~for d52) and 2 ~for d
53). Ford52 we see that none of the configurations, exc
the one forN513, have single hydrophobic cores. Instea
the hydrophobic~A! monomers form clusters of typicall
4–5 particles. This is easily explained by the fact that hyd
phobic monomers are always flanked by polar monom
along the chain. Thus a clean separation into hydropho
and polar regions is impossible. This shows that the
model with Fibonacci sequences would be a very poor mo
for real proteins ind52. In Fig. 2 we see that the same
true to a lesser degree ind53. There the chains withN
521 andN534-fold into configurations with single hydro
phobic cores~except for a singleA monomer which keeps
out in both cases!, and only the chain withN555 forms two
clearly disjointed main hydrophobic groups.

In conclusion we have extended the PERM algorithm
an off-lattice two-species protein model. We have shown t
it performs well, indeed we are able to refute with it th
previous claims for putative ground states.

The chosen model is not very realistic. This follows par
from the restriction to two types of monomers, partly fro

FIG. 1. Putative ground states of Fibonacci sequences liste
Table I in 2D space. Full dots indicate hydrophobic monomers.
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the fact that we did not include, as in@11#, more realistic
local ~bond angle and torsion! forces, and partly from the
restriction to Fibonacci sequences. Each of these feat
could have been easily avoided, and PERM works ind
equally well if we modify any of them. But it was not ou
aim to present a realistic model. Rather we wanted to tre
model which is suitable for benchmarking, because it is
fined in a simple way and because it was already studie
detail before.

It is less obvious whether PERM would also perform w
for all-atom models with realistic potentials, or even wi
explicit solvents. Typically, its performance decreases qu
rapidly with the number of degrees of freedom, but presu
ably it shares this with other modern methods like multic
nonical sampling and parallel tempering. To answer t
question, we have started such simulations with the ECE
force field implemented in SMMP@22#. But it is still too
early to draw any conclusions.

We thank Walter Nadler for numerous fruitful discussio
and for critically reading the manuscript.

in

FIG. 2. Stereographic views of putative ground states of
Fibonacci sequences listed in Table I. Again,A monomers are
shown as filled circles.
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